Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3

نویسندگان

  • Congmin Li
  • Sunghyuk Lim
  • Karl H. Braunewell
  • James B. Ames
چکیده

Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural analysis of Mg2+ and Ca2+ binding, myristoylation, and dimerization of the neuronal calcium sensor and visinin-like protein 1 (VILIP-1).

Visinin-like protein 1 (VILIP-1) belongs to the neuronal calcium sensor family of Ca(2+)-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca(2+) and Mg(2+) binding, characterize metal-induced conformational changes, and determine structural effects of myristoylation and dimerization. Mg(2+) binds functionally to VILIP-1 at EF3 (ΔH = +1.8 kcal/...

متن کامل

Specific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins.

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of posit...

متن کامل

Differential regulation of CaV2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation.

P/Q-type Ca2+ currents through presynaptic CaV2.1 channels initiate neurotransmitter release, and differential modulation of these channels by neuronal calcium-binding proteins (nCaBPs) may contribute to synaptic plasticity. The nCaBPs calcium-binding protein 1 (CaBP1) and visinin-like protein-2 (VILIP-2) differ from calmodulin (CaM) in that they have an N-terminal myristoyl moiety and one EF-h...

متن کامل

Reversible translocation and activity-dependent localization of the calcium-myristoyl switch protein VILIP-1 to different membrane compartments in living hippocampal neurons.

Visinin-like protein-1 (VILIP-1) belongs to the family of neuronal calcium sensor (NCS) proteins, a neuronal subfamily of EF-hand [corrected] calcium-binding proteins that are myristoylated at their N termini. NCS proteins are discussed to play roles in calcium-dependent signal transduction of physiological and pathological processes in the CNS. The calcium-dependent membrane association, the s...

متن کامل

Comparison of VILIP-1 and VILIP-3 Binding to Phospholipid Monolayers

The neuronal calcium sensor proteins Visinin-like Proteins 1 (VILIP-1) and 3 (VILIP-3) are effectors of guanylyl cyclase and acetyl choline receptors, and transduce calcium signals in the brain. The "calcium-myristoyl" switch, which involves a post-translationally added myristoyl moiety and calcium binding, is thought to regulate their membrane binding capacity and therefore, play a critical ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016